
1 Solution for the linear system of ODE’s presented in

Section 2

Although the current application considered a two-dimensional physical model, our proposed

framework applies to m-dimensional linear systems of ODE’s. Consider the general linear

system

d

dt
c(t) = Wc(t) + g , (1)

where c(t) is an m× 1 vector function of t, W is an m×m matrix (which may depend upon

known and unknown inputs but we suppress them in the notation here) that has m real and

distinct eigenvalues and g is a vector of length m.

When W has m distinct eigenvalues, we can find a non-singular matrix P such that

W = PΛP−1, where the columns of P are linearly independent eigenvectors. Therefore,

eW = PeΛP−1, where Λ is a diagonal matrix with λi as the i-th diagonal element, i =

{1, 2, · · · ,m}. Now, let Gi = uiv
T
i , where ui is the i-th column of P and vT

i is the i-th

row of P−1. (These are often referred to as the right and left eigenvectors respectively.) It

is straightforward to see that (i) G2
i = Gi, (ii) GiGj = 0 ∀ i 6= j and (iii)

m∑
i=1

Gi = Im.

Each Gi is idempotent and is, in fact, the oblique projector onto the null space of W−λiIm

along the column space of W − λiIm. It is also easily verified that etWe−tW = Im and

etWW−1 = W−1etW.

From the above properties of the Gi matrix, it easily follows that eW =
m∑
i=1

eλiGi. Con-

sequently,

d

dt
etW =

m∑
i=1

λie
λitGi =

m∑
i=1

λie
λituvT

i = PΛetΛP−1 = PΛP−1PetΛP−1 = WetW

and

∫
etWdt =

m∑
i=1

1

λi
eλitGi = PΛ−1etΛP−1 = PΛ−1P−1PetΛP−1 = W−1etW .
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Multiplying both sides of (1) by e−tW from the left yields:

e−tW
[
d

dt
c(t)−Wc(t)

]
= e−tWg =⇒ d

dt

[
e−tWc(t)

]
= e−tWg . (2)

Integrating out both sides of (2), we obtain e−tWc(t) = −W−1e−tWg + k, where k is a

constant vector. The initial condition at t = 0 yields c(0) = −W−1g+k, so k = c(0)+W−1g.

Consequently, c(t) = etWc(0) + W−1
[
etW − Im

]
g is the solution to (1).

The two-zone model (Section 2) fits into the above framework with m = 2. Therefore,

to use the result just derived, we have to guarantee that W has 2 distinct eigenvalues. The

eigenvalues of W determine the numerical stability and the physical interpretability of the

two-zone model. The two eigenvalues of W are the roots of the characteristic polynomial

λ2 +
(

β
VN

+ β+Q
VF

)
λ + βQ

VNVF
= 0. Note that det(W) =

βQ

VNVF
, which means that W is

nonsingular as long as β and Q are not zero. The eigenvalues are available in closed form as

λ1 = 1
2

[
−
(
βVF+(β+Q)VN

VNVF

)
+

√(
βVF+(β+Q)VN

VNVF

)2
− 4

(
βQ
VNVF

)]
,

λ2 = 1
2

[
−
(
βVF+(β+Q)VN

VNVF

)
−
√(

βVF+(β+Q)VN
VNVF

)2
− 4

(
βQ
VNVF

)]
.

(3)

Furthermore, since β, Q, VF and VN are all strictly positive, we find

(
βVF + (β +Q)VN

VNVF

)2

−4

(
βQ

VNVF

)
=
β2V 2

F + 2βVF (β +Q)VN + (β +Q)2V 2
N

(VNVF )2
− 4

βQ

VNVF

=
(βVF −QVN )2 + 2β2VFVN + (β2 + 2βQ)V 2

N

(VNVF )2
> 0 .

This implies that the eigenvalues in (3) are real and distinct. The latter two quantities are

volumes of a chamber and clearly positive. Physical considerations ensure that the same is

true for β and Q. Assigning priors with positive support is all that is needed to ensure a

stable system with real solutions.
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We conclude this section with two figures that may offer further insight into the behavior

of the two-zone model for varying values of the parameters. Figures 1(a) and 1(b) depict the

trajectories of the exposures contrations over time in the near and far fields respectively. We

consider three possible values for each parameter: (a)β = {3, 7, 14}, (b) Q = {12, 15, 18} and

(c) G = {74, 105, 136}. We then plot the trajectories of the exposure concentrations over

time at the near and far fields obtained for each combination of the parameters β, Q and G.

This results in 27 trajectories. Here, the volumes at the near and far fields are respectively

1.1m3 and 240m3.
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(a) Near Field
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(b) Far Field

Figure 1: Trajectories of the exposures concentrations at the near and far fields for different
two-zone model parameters.
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